吞噬小说网

吞噬小说网>金岳霖 哲学 > 02(第1页)

02(第1页)

02

五·一七 时面上的个体是个体时间特殊化底极限。

前此我们已经表示特殊有两方面的意思,这两方面的意思可以合也可以分。如果分开来,谈一方面已经够了。我们以后特别注重时间方面的特殊化,因为比较起来时间上的特殊化似乎简单得多。同时以时间上的特殊化为主体,空间也有特殊化底问题。而特殊的空间仍可以顾虑得到。

时面上的个体是无时间积量的个体。在定义上时面有空间积量,但时面是特殊底极限,是老不现实的可能,所以它不会有个体,那就是说时面上没有个体。时面上虽没有个体,而个体在时间上的特殊化底极限仍是时面上的个体。个体在时间上的特殊化虽不能达到时面,而仍以时面为极端特殊化底标准。

对于时面上的个体,一方面我们什么话都可以说,另一方面,什么话都不能说,要看我们所说的话底形式或意义如何。时面上既根本就没有个体,不假设主词(当然是说主词所代表的东西,而不是说主词本身)存在的全称命题,只要它们彼此不冲突,似乎都可以说。肯定主词存在的特称命题以及具叙述词的命题似乎都不能说。在某一时面上的某一个体,既是一个体底特殊化底极限,关于这样的个体的命题,如果能有命题的话,一方面根本就无所谓证明,另一方面根本就不能证实,所以是没有意思的话。(请注意这里所说的是某一时面上的某一个体,而不是普遍地谈时面上的个体。)在日常生活中,我们对于许许多多的个体仍可以说出许多的真话底理由实在是因为它们虽特殊,而不是极端的特殊。关于这一点,以后还要谈到。

五·一八 空间底时间特殊化即空间底时间位置化。时面上的空间是空间底时间特殊化底极限,地点是特殊的空间。

我们既把特殊化限制到时间上的特殊化,空间也有特殊化底问题。在这里谈空间有点像在五·一六、五·一七两条谈个体一样。空间与个体当然不同,可是,空间底时间特殊化与个体底时间特殊化有一致的程序。空间底时间特殊化底极限是时面上的空间。如果所谓空间是整个的空间,则它底时间上的特殊化底极限就是时面。如果所谓个体是整个的本然世界,则它底时间上的特殊化底极限也是时面。其余非整个空间在时面上的空间仍是空间。但是它既无时间积量,当然还是不会有能。

个体所占的空间,无论它底时间特殊化底程序若何的高,总是有时间积量的空间,这就是说个体所占的空间虽特殊化而它总不会达到极限特殊底程度上去。这样的特殊空间我们名之为地点。整个的空间除外。地点总是有时间积量的。说一件东西在某一地点,无论指出时间与否,总有时间上的范围。地点总是相对的,说一东西在某一地点,所谓地点总是相对于同时间中个体与个体底种种关系。

五·一九 空线底时间特殊化即空线底时间位置化。时点—空点是空线底时间特殊化底极限。

本文底办法既注重时间上的特殊化,谈时面的机会颇多,而谈空线的机会太少。在本条底注解里,我们要补上几句话。

时面是往而不返的极限,空线是居而不兼的极限。如果我们注重惟一无二,我们也可以特别地提出空线来讨论。非空线的空间当然不兼其所不居,但在它所居的范围之内,它既有所据,所以也兼任何部分空间之所居。任何空线根本就无所谓据,所以无论如何不会兼任何其它空线之所居。可是,它虽不据而它仍有所居,它是空间中绝对的位置。这里所说的绝对的位置也可以说就是惟一无二的位置。惟一无二也是特殊底条件之一,从惟一无二这一方面着想,从惟一无二的空间着想,空线本身就是特殊底极限。

五·一○条已经表示空线不往不来,这当然是就整条的空线说。若不从整条空线而从某一空线在某一时间上说,它本身虽惟一无二,而它底已往的部分也往而不返。把这时间上的距离缩小,这条空线在时间上的特殊化底程度也愈高。可是,这距离无论如何地缩小,它不会等于零,所以空线无论如何地时间特殊化,它总不会达到特殊化底极限,那就是说,总不会达到时面。在时面上的空线就是时点—空点。这就是这里所说的时点—空点是空线底时间特殊化底极限。

空线底位置不是相对的。所谓不是相对的就是说它不相对于个体底位置。这里的意思颇复杂。我们暂且用以下的说法表示,成功与否,颇不敢说。今天十二点钟的太和殿占相对的空间,也占绝对的空间。前者是根据于北京城内其它房子等等个体,后者根据于某某空线所范围的位置与空间,相对于地球,前一项的关系,除动的个体之外,在今天与昨天的十二点钟大都一样。但是,相对于太阳系,太和殿昨天十二点钟所占的位置不是今天所占的位置。相对于其它行星恒星,话更不容易说了。可是,太和殿昨天十二点钟所占的位置,从空线所范围的位置着想,仍是今天的位置,不过太和殿今天是否在那位置上我们在事实上没有法子知道而已。也许从此以后,太和殿不会回到昨天十二点钟所占的空线的位置上去。无论如何,那位置在无量数年之前,已经是那位置,在无量数年之后,也还是那位置。那位置是绝对的。空线穿过所有的时间,空线所范围的位置也穿过所有的时间。这就是说,无论在甚么时间这位置不变,所以绝对。

五·二○ 任何两时间的整个的空间仅有绝对时间上的先后,任何两地点的整个的时间仅有绝对空间上的关系。

两时间的非整个的空间,例如昨天与今天的北平,有两套时间上的关系,一套是相对于地点及个体的时间上的关系,一套是绝对的时间上的关系。前一套是可以度量的。度量费时间。度量底结果,同时期的各不同地点有各地点本身的时间。各地点的时间虽彼此一致,彼此可以对译,但究竟不同。后一套的时间上的关系就是前一套彼此一致,彼此能对译底理由或根据。

可是,两时间中的整个的空间情形不同。整个的空间不是普通所谓地点,它虽有与它相对,或相对于它的个体,而它没有它所相对的个体,因为它无外,它不居。它根本就没有相对的时间上的关系,即令我们一定要说它有相对的时间上的关系,那关系也就是在任何地点上,我们不能不承认其为绝对的时间上的关系。这就是本条底前一部分的意思。本条后一部分的意思与以上差不多,不过把同样的道理引用到两地点的整个的时间上去而已。也许在这一方面,这道理显而易见。即以整条的空线而论,它是整个的时间,整个的时间只有空间上的位置,而这位置不相对于任何一时间上的个体,两地点的整个的时间情形一样。

五·二一 任何两时间的任何一部分的空间,任何两地点的任何一部分的时间都兼有相对的时空关系。

有上面的注解,本条底话可以说是用不着说的,其所以要说的道理不过是要表示相对时空底重要。这当然不是说绝对时空不重要。重要与否本身是相对的。从我们底经验看来,从科学看来,从普通的知识看来,相对的时空非常之重要。我们能够度量的时空,我们能够以手术论的方式去表示的时空都是相对的时空。

这里说兼有的意思就是表示非整个的时间空间不仅有绝对时空上的关系而且有相对的时空上的关系。它们有绝对的时空似乎不成问题,即成问题,前此已经讨论过。相对的时空底秩序根据于绝对的时空底秩序,我们曾经以专条提出。可是,我们要注意从比较狭义的经验着想,我们所经验的是相对的时空,而绝对的时空似乎要在相对的时空中才能得到。这层意思以后再提出讨论。

五·二二 个体虽特殊而特殊化底程度不一。

本条非常之重要,似乎应该有详细一点的讨论才行。我们先从两方面说起,一方面是个体与个体之间的特殊化底程度问题,另一方面是同一个体底特殊化底程度问题。

个体与个体之间的特殊化底程度不一。特殊化之有程度问题从以上讨论特殊底极限就可以知道。特殊化既有极限,当然有程度,有程度,当然可以分层次或等级。个体与个体之间,有些特殊化底程度高,有些程度低,例如我这张桌子与西山。从程度高的个体这一方面着想,程度低的特殊的个体不是同一等级或同一层次的特殊个体,所以在那一等级或层次,程度低的特殊个体不是特殊。笼统一点地说,以程度高的特殊为标准,程度低的特殊个体不是特殊。这句话表面上有冲突,其实没有。

从任何同一个体说,情形一样。五·一六那一条已经表示清楚。最简单的说法就是说一点钟的特殊个体不是一分钟的特殊个体,一分钟的特殊个体不是一秒钟的特殊个体。如果以一秒钟的特殊个体为特殊底标准,一分钟的个体不是特殊,以一分钟的特殊个体底特殊为标准,一点钟的个体不是特殊。

个体之为特殊不是笼统的,说它特殊总有程度标准。我们对于个体所能说的话底多少要靠特殊化底程度底高低。事实上我们也许不提出程度问题,可是,事实上虽不提出特殊化底程度标准,而理论上仍不能没有这种程度底标准。对于特殊化非常之高的个体,我们所能说的话非常之少,对于特殊化低的个体,我们所能说的话比较的多(这里所谓能说的话,是直接或间接能证实其为真的命题)。此所以我们对于极端特殊虽无话可说,然而对于个体仍有话可说。

我们可以利用特殊化程度低的情形推测到特殊化程度高的情形,也可以利用特殊化程度高的情形推测到特殊化程度低的情形。兹以P程度特殊化的甲个体为例。设甲个体底性质关系为φ,ψ,…,则在甲个体特殊化底程序中,比P程度更高的P1,P2,P3,…,Pm,…,Pn,甲个体底性质关系大概也是φ,ψ,…。反过来,设Pm与Pn程度特殊化的甲个体底性质与关系为φ,ψ,…。则包括Pm,…,Pn而比Pm或Pn程度更低一级的特殊化的甲个体底性质关系也大概为φ,ψ,…。这里所说的“大概”应有原则以为根据。但在现在,我们不提出此问题。

特殊化程度底高低是非常之重要的问题,我们要重复地提出一下。设以P1,P2,P3,…,pn代表一特殊化程度由高到低的秩序,相对于P1,P2不是特殊,相对于P3,P2是特殊;相对于P2,P3不是特殊,相对于P4,P3是特殊。其余由此类推。假如在此秩序中有最低的程度,则在此最低程度的个体不是特殊。包括一切的或无时间限制的本然世界不是特殊的个体。

热门小说推荐

最新标签