吞噬小说网

吞噬小说网>日常生活中统计学的作用 > 第1部 快速学习理解贝叶斯统计学的精髓(第1页)

第1部 快速学习理解贝叶斯统计学的精髓(第1页)

第1部快速学习!理解贝叶斯统计学的精髓

在第1部中,将为您解说关于“贝叶斯统计的推算应该用何种方法来思考,具有什么样的性质”的问题。解说中采用了我们身边的许多事例,如“这位顾客是来买东西,还是随便逛逛”“收到的是真命巧克力?还是义理巧克力”对于读者来说,这些例子应当是很容易想象和理解的。另一方面,本书内容涉及贝叶斯统计学与“序贯理性”“内曼-皮尔逊统计学”的区别,这对于贝叶斯统计学的特征,已经探讨得相当深入了。

第1讲信息增加导致概率变化“贝叶斯推理”的基本方法

1-1通过贝叶斯推理来辨别“买东西的人”和“随便逛逛的人”

本讲将通过一个商业案例,为大家介绍经典的贝叶斯推理方法。

商店里的售货员最关心的问题莫过于“这位顾客究竟是来买东西的,还是随便逛逛而已”。真正来买东西的顾客,一般而言,比起四处逛逛看看,更倾向于在最短时间内找到自己需要的商品。另一类顾客则是这样的:一时不急着买,而是先随便问问价格,为以后购买做个参考。对待前者,作为售货员,理应为其介绍需要的商品并让其买下;而对待后者,如果同样花费时间为其推荐商品,顾客不但不会购买,反而会感到厌烦,结果适得其反。

所以对于店员来说,通过顾客的行为来揣测他们的真实想法,是一项重要的本领。很多店员可以做到:通过直觉来判断顾客属于哪一类,而这正是身为一名店员的重要工作技巧。在此,我们将这种“基于直觉的判断”数值化,从而使它可以通过计算获得。把方法编成手册,教给新店员,这就像在互联网上能够实现自动判断的AI(人工智能)一样,是一项意义非凡的工作。

下文将具体介绍“将店员的判断方法数值化”的方法,该方法恰巧适用贝叶斯统计学。进而言之,通过该事例,我们也可以弄懂贝叶斯统计学的概念。下文将分节进行解说。

1-2第一步:通过经验设定“先验概率”

假设一个场景:面前有一位顾客,此时你需要做的是,推测该顾客究竟是“来买东西的人”,还是“随便逛逛的人”。只有做出正确的判断,才能采取正确的接待方法。

推算的第一步:将两种顾客(来买东西的顾客、随便逛逛的顾客)的比例进行数值分配。这句话的意思是:假设面前的这位顾客一定属于两种中的一种,以此为前提,该顾客为第一种或第二种的可能性分别为多少?将这个可能性用数值表示出来。

在贝叶斯统计学中,这种“某种类别的概率(比例)”有一个专有名词,叫作“先验概率”。“事前”的含义是:在获得某项信息之前。此处的“信息”是指:附加的状况,比如顾客忽然过来询问。通过“过来询问”这一信息,可以对顾客类别的推算进行修改,而“先验概率”是指,在“过来询问”或“不过来询问”的情况发生之前进行的概率判断。

通常,“先验概率”可通过经验来判断。在特殊情况下,即使没有类似经验,也可以进行判断,这部分特殊事例将在第3讲进行解说,此处暂且不做讨论。

根据自己的经验,每5位顾客中就有1位是“来买东西的”,也就是说,这一部分顾客占全体的20%(0。2),那么剩下“随便逛逛”部分的比例便为80%(0。8)。这两个数字,便是两类顾客的“先验概率”。

在这个事例中,在观察面前顾客的行为之前,判断“该顾客是属于概率0。2的买东西的人,还是概率0。8的随便逛逛的人”,这个过程被称为“某一类别的先验分布”,如图表1-1所示。

图表1-1先验分布:分割长方形

图表1-1中的大长方形被分割为两部分,两部分的面积所占比例分别为0。2和0。8,这正是分割时的诀窍。本书将在后面逐渐阐明:“面积”的概念在贝叶斯概率的计算中,起着重要的作用。

以上图示的方法为本书独创。希望各位读者将这幅图牢记于心,这样有助于在头脑中勾勒出贝叶斯统计学方法的大致雏形。

该图可以理解为:将整体分为两种不同的情况。这意味着,自己所处的环境为A或B中的一个,A情况下的顾客为“来买东西的人”,B情况下的顾客为“随便逛逛的人”,但不知道究竟是A还是B。只是先在头脑中构筑一个大致的印象。哲学上将这种见解称为“可能世界”,在进行逻辑推算或概率推算时,采用这种“划分互不相同的可能性”的思维方法,有利于整理思路。

在这里将长方形的面积设定为0。1和0。4,两部分的比例依然为1:4,这与设定为0。2和0。8时的比例相同。那么,为何要将面积设置为0。2和0。8呢?这是因为,用数值来计算概率的情况下,需要在多种可能性中,选取“将各部分概率相加,总和为1”的那一种,这种情况被称为“标准化条件”。

1-3第二步:设置发生“向店员询问”事件的条件概率

在这一步,我们要做的是:为“来买东西的人”和“随便逛逛的人”这两类顾客分别设定“向店员询问”的概率。如果没有相关经验和数据作为支撑,这项工作是无法完成的。上一节讲到,即使没有相关经验,也可以设定先验概率。但此处的“各个分类的行动概率”,必须是基于一定的经验、实证、实验的数值。

图表1-2中的数值,是为了计算简便而设定的,并非真实数据。

图表1-2关于“向店员询问”这一行为的条件概率

从图表1-2中可以看出,“来买东西的”顾客向店员询问的概率是0。9,而“随便逛逛的”顾客向店员询问的概率只有0。3。

需要注意的是:图表1-2从横向来看,0。9+0。1=1,0。3+0。7=1,两行都满足标准化条件;而纵向来看,0。9+0。3≠1,也就是说并不满足标准化条件。具体分析一下:横向的一行,表示某一类别的顾客可能采取的两种行动。比如第一行数字,表示“来买东西的人”向店员“询问”或“不询问”这两种行为,顾客有可能询问,也有可能不询问,最终采取的行动一定是其中之一,没有第三种可能性。而纵向来看,第一列数字表示,“来买东西的人”向店员询问的概率为0。9,“随便逛逛的人”向店员询问的概率为0。3,两个数字相加之和并不等于1。这是因为,对象范围包含了两个不同类别的顾客,并且也没有涵盖所有的行动。

图表1-2中的数字,表示“某一特定类别采取各种行动的概率”,这在高等数学中被称为“条件概率”。用“原因”的概念来解释,即“在原因明确的情况下,某一类别采取各项行动的结果概率”(第15讲中将介绍:如何用符号来表示条件概率)。

将两个类别的顾客,进一步按照“询问”和“不询问”的条件来分类,那么前文所述的两个大类别又可以细分为四个小类别,分别是:“来买东西的人询问店员”“随便逛逛的人询问店员”“来买东西的人不询问店员”“随便逛逛的人不询问店员”,如图表1-3所示。

图表1-3四种互不相同的可能性

一共存在四种可能性:来买东西的人询问店员(左上区域)、来买东西的人不询问店员(左下区域)、随便逛逛的人询问店员(右上区域)、随便逛逛的人不询问店员(右下区域)。概率的具体计算方法将在第10讲中具体介绍,此处对于结论先进行说明:各个区域所表示的概率与每个长方形的面积相等。长方形的面积可以用乘法求得,如图表1-4所示。

图表1-4四种互不相同的可能性各自所对应的概率

热门小说推荐

最新标签