吞噬小说网

吞噬小说网>给孩子的数学三书 > 一数学是什么(第1页)

一数学是什么(第1页)

一、数学是什么

这里所要说明的“数学”这一个词,包含着算术、代数、几何、三角,等等在内。用英文名词来说,那就是Mathematics。它的定义,照平常的想法,非常简单而且非常明了,几乎已用不到再加说明。但真要说明,那却问题很多。且先举罗素在他所著的《神秘主义与逻辑及其他论文》提出的定义,真是叫人莫名其妙,好像在开玩笑的一般。他说:

“Mathematicsmaybedefiinwhieverknoearetalkingabout,wearesayingistrue.”

将这句话很粗疏地译出来,就是:

“数学是这样的一回事,弄它这种玩意儿的人也不知道自己究竟在干些什么。”

这样的定义,它的惝恍迷离,它的其妙莫测[1],真是“不说还明白,一说反糊涂”。然而,要将已经发展到现时的数学的领域统括得完全,要将它的繁复灿烂的内容表示得活跃,好像除了这样也没有别的更好的话可说了。所以帕佩里茨、伊特尔森和路易·古度拉特几位先生对于数学所下的定义也是和这个气味相同的。

对于数学的一般的读者,这定义,恐怕反使得大家堕入五里雾中,因此拨云雾见青天的工作似乎少不来了。罗素所下的定义,它的价值在什么地方呢?它所指示的是什么呢?要回答这些问题,还是用数学的其他的定义来相比较更容易明白。

在希腊,亚里士多德那个时代,不用说,数学的发达[2]还很幼稚,领域也极狭小,所以数学的定义只需说它是一种“计量的科学”,已很可使人心满意足了。可不是吗?这个定义,初学数学的人是极容易明白而且能够满足的。他们解四则问题、学复名数[3]的计算,再进到比例、利息,无一件不是在计算量。就是学到代数、几何、三角,也还不容易发现这个定义的破绽。然而仔细一想,它实在有些不妥帖。第一,什么叫作量,虽则我们可以常识来解释,但真要将它的内涵弄个明白,也不容易。因此用它来解释别的名词,依然不能将那名词的概念明了地表出。第二,就是照常识来解释量,所谓计量的科学这个谓语也不能够就明确地划定数学的领域。像测量、统计这些科学,虽则它们各有特殊的目的,它们也只是一种计量。由此可以知道,单用“计量的科学”这一个谓语联系到数学而成一个数学的定义,未免广泛了一点。

若进一步去探究,这个定义的欠缺还不止这两点,所以孔德就加以修改而说:“数学是间接测量的科学。”照前面的定义,数学是计量的科学,那么必定要有量才有可计算的,但它所计的量是用什么手段得来的呢?用了一支尺就可以量一幅布有几尺几寸宽,有几丈几尺长;用了一杆秤就可以量一袋米有几斤几两重,这自然是可以直接办到的。但若行星轨道的广狭、行星自己的体积,或是很小的分子的体积,这些就不是人力所能直接测定的,然而由数学的方法可以间接将它们计算出来。因此,孔德所下的这个定义,虽则不能将前一个定义的缺点全然补正,但总是较进一步了。

孔德究竟是19世纪前半期的人物,虽则他是一个不可多得的哲学家和数学家,但在他的时代,数学的领域远不及现在的广阔,如群论、位置分析、射影几何、数论,以及逻辑代数等,这些数学的支流的发展,都是他以后的事。而这些支流和量或测量实在没甚关系。即如笛沙格所证明的一个极有兴味的定理:

“两三角形的顶点若在集交于一点的三直线上,则它们的相应边的交点就在一条直线上。”

这个定理的证明,就只用到位置的关系而和量毫不相干。数学的这种进展,自然是轻轻巧巧地便将孔德所给的定义攻破了。

到了1870年,皮尔士就另外给数学下了一个这样的定义:

“数学是产生‘必要的’结论的科学。”

不用说,这个定义比以前的都广泛得多,它已离开了数、量、测量,等等这些名词。我们知道,数学的基础是建筑在几个所谓公理上面的。从方法上说,不过由这几个公理出发,逐渐演绎出去而组成一个秩序整然的系统。所谓公式、定理,只是这演绎所得的结论。

照这般说法,皮尔士的定义可以算得完全无缺吗?

不!依了几个基本的公理,照逻辑的法则演绎出的结论,只是“必然的”,若说是“必要”,那就很可怀疑。我们若要问怎样的结论才是必要的,这岂不是很难回答吗?

更进一步说,现在的数学领域里面,固然大部分还是采用着老法门,但是像皮亚诺、布尔和罗素这些先生们,却又走着一条相反的途径,他们要掉一个方向对于数学的基础去下寻根问底的功夫。

于是,这个新鲜的定义又免不了摇动。

关于这定义的改正,我们可以举出肯普的来看,他说:

“数学是一种这样的科学,我们用了它来研究思想的题材的性质的。而这里所说的思想,是归依到含着相异和相同、个别和复合的一个数的概念上面。”

这个定义,实在太严肃太文气了,而且意味也有点含混。在肯普以后,博歇把它改变了一下,便这样说:

“倘若我们有某一群的事件同着某一群的关系,而我们所要研究的问题,又单只是这些事件是否适合于这些关系,这种研究便称为数学。”

在这个定义中,有一点最值得注意,博歇提出了“关系”这一个词来解释数学,它并不用什么数咧、量咧这些家伙,因此很巧妙地将数学的范围扩张到“计算”以外。

假如我们只照惯用的意义来解释“计算”,那么,到了现在,数学中有些部分确实并不是和计算有什么因缘。

也就因了这个缘故,我喜欢用“数学”这个词来译Mathematics,而不喜欢用“算学”。虽则“数”字也还不免有些语病,但似乎比“算”字来得轻些。

倘使我们再追寻一番,我们还可以发现博歇的定义也并不是“悬诸国门不能增损一字”的。不过这种功夫越来越细微,也不容易理解。而我这篇东西不过想给数学的一般读者一点数学的概念,所以不再往里面穷追了。

将这个定义来和罗素所下的比较,虽然已距离较近,但总还是旨趣悬殊。那么,罗素的定义果真只是开玩笑吗?

我是很愿意承受罗素的定义的,为了要将它说得明白些,也就是要将数学的定义——性质——说得明白些,我想这样说:

“数学只是一种符号的游戏。”

假如,有人觉得这样太轻佻了一点,严严正正的科学怎么好说它是“游戏”,那么,就这般说也可以:

热门小说推荐

最新标签